If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x=-7.75
We move all terms to the left:
x^2-7x-(-7.75)=0
We add all the numbers together, and all the variables
x^2-7x+7.75=0
a = 1; b = -7; c = +7.75;
Δ = b2-4ac
Δ = -72-4·1·7.75
Δ = 18
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18}=\sqrt{9*2}=\sqrt{9}*\sqrt{2}=3\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3\sqrt{2}}{2*1}=\frac{7-3\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3\sqrt{2}}{2*1}=\frac{7+3\sqrt{2}}{2} $
| 1.4d+3.25=1+2.25d | | 2x^2+6=40 | | 6=5n-3n | | 10x+17=4×-1 | | 2/3n-2/3=n/6+4/2 | | 140=5(x-65)+40 | | 4(w-6=3(w+1) | | 6(x+4)-4=-8 | | (20+2x)(16+2x)=1120 | | (20+2x)×(16+2x)-20×16=1120 | | 5x14=x7 | | 1/5x-1/3=2 | | 4.9x^2-16x-2.10=0 | | y^2-8y+64=0 | | X^2+(x+8)^2=1296 | | (20+2x)(16+2x)-20×16=1120 | | 3/4x+1=-11 | | 115=5(x-55)+40 | | 2x^2+5x-1=2x(x+(19/2)) | | 3(2-y)+5=3y | | 3h+3=33 | | -2(4s-5)-10=-2(6s+11)-2 | | 10=-4+d | | (Q-9)x6=12 | | 1/4x+1/5=25/6x+15 | | 21.7=m7.7 | | -2(3s-4)-8=-2(8s+6)-2 | | b+18=30 | | -2x^2+4x=9 | | -15-5a=2a-4a | | -19=4x-3(3+2x) | | 0.15(x+20)-0.08(x-30)=1.9 |